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We calculate the on-axis field components for the RFOFO cooling ring. The ring consists of 12 
cells, each containing two solenoids. Each solenoid is modeled here as a current sheet. 
Independent calculations made using the Biot-Savart equation give identical results. The dipole 
field comes from tipping the solenoid axis above and below the bending plane. We show the field 
components in the accelerator coordinate system. We checked the validity of the solution by 
showing that the field components satisfy Maxwell’s equations along the circle. This was done 
using independent calculations in cylindrical and Cartesian coordinates.  
 
 
1.  Introduction 
 
The RFOFO cooling ring was conceived by Bob Palmer and represents a promising 
approach to achieving 6D cooling for a neutrino factory or muon collider. The original 
design [1] used a field on the reference particle trajectory (RPT) consisting of an 
alternating solenoid field along the trajectory and a combined function dipole field 
transverse to it. The dipole field was 0.125 T and the field index was 0.5 everywhere 
along the RPT. Later an approximate field configuration was considered [2] where the 
dipole field came from tipping the solenoids. Simulations for this design used periodic 
functions for BS and BY on the RPT, but assumed the BX field was negligible. In what 
follows we refer to this as the ng1r model of the ring. 
 
 In this note we consider the exact field on the system axis (SA) for the ring. The SA is of 
course a circle and is not the same as the RPT. However, work by Valeri Balbekov [3] 
has shown that the RPT (i.e. the closed orbit for the reference particle) should be ~2 cm 
from our SA, while the sheets we use here have radii ~80 cm. Thus we expect these fields 
to give a good approximation to the true fields. In subsequent work we intend to find the 
actual fields on the RPT. 
 
Balbekov [3] has also given on-axis fields in his note that differ from those given here. 
We should emphasize that our fields result from summing all 24 solenoids in the ring, 
whereas Balbekov’s fields come from the solenoids in a given cell and its nearest 
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neighbor cells. Balbekov assumes that iron will be present around the solenoids that 
shields the axis from the other solenoids. We do not make this assumption. 
 
 
2.  Field from a current sheet 
 
The field components (BU, BV) at some observation point O due to an annular current 
sheet S with radius a, length L and current density J is given by a known function [4,5]  
BS(u,v;a,L,J), where (u,v) are the axial and radial distances of O in a cylindrical 
coordinate system centered at S. The polarity of the sheet field is determined by the sign 
of J. The sign convention for the coordinates is 
 

u is positive if O is in the positive z direction in the frame of S 
v is always positive 
 

For the fields 
 
 BU is positive if it points in the same direction as the polarity of the sheet 
 BV is positive if it is diverging from the axis of the sheet 
 
 
3.  Sheet fields on a ring 
 
Let us consider a problem where all our observations points are constrained to lie on a 
circle of radius ρo. We define the plane containing this circle to be the reference plane. 
The x and z axes of a right-handed Cartesian coordinate system are defined to lie in the 
reference plane, as shown in Fig. 1. 
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Figure 1. 
 
We assume that the centers of all current sheets lie on the reference plane. Take an 
observation point O located at the azimuthal angle αo and a sheet S whose center has the 
radius ρ and angle αS. The problem we want to solve here is to find the field at O due to 
the sheet at S. We want the answer in a right-handed “accelerator” coordinate system, 
where the z axis is tangent to the circle at O, the x axis lies along the radius at O, and the 
y axis is perpendicular to the reference plane. 
 
In the case when the symmetry axis of the sheet is also in the reference plane (i.e. no dip) 
it is fairly easy to solve this problem directly. From symmetry the only relevant angle is 
the relative angle between O and S. Thus we define the angle β = αO – αS    and for 
convenience locate S along the z axis, as shown in Fig. 2. 
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Figure 2. 
 
The coordinates of O in the sheet coordinate system are 
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where we keep the convention of always taking the observation point minus the sheet 
coordinates. The angle β is positive in this example. Once u and v are known, we can 
evaluate BS and find the field components BU and BV. Since BV is the radial component 
in a cylindrical coordinate system, its value is independent of azimuth. We get the signed 
component in the plane from 
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Note that vX is negative in this example and thus BVX is positive. In order to get the 
proper numerical values the field components in the accelerator coordinate system are 
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So the first constraint we have to satisfy is that the general transformation equations must 
reduce to Eqs. 1 and 3 when the dip angle out of the reference plane is zero.  
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Next consider the simple test example shown in Fig. 3. 
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Figure 3. 
 
We have four sheets spaced equally around the circle and an observation point O at the 
right edge of the circle. The current is defined as positive for all four sheets. Table 1 
gives the contributions of each of the sheets at O calculated using Eqs. 1-3. 
 
 Table 1: Contributions of sheets to field at O. 
sheet u vX bU bV sin β cos β bX bS 
1 -3.7 -1.5 26 -17 -0.71 0.71 6.5 31 
2 -3.7 -9.0 -0.7 -1.3 -0.71 -0.71 0.4 1.4 
3 3.7 -9.0 -0.7 1.3 0.71 -0.71 -0.4 1.4 
4 3.7 -1.5 26 17 0.71 0.71 -6.5 31 
 
The bi quantities are relative field components. The signs are such that all the 
contributions bS add, while the bX cancel. Thus a second constraint on the general 
transformation equations is that they produce field components with the proper symmetry 
to produce these resultant field components at O. 
 
In the more general case where the symmetry axis of the sheet makes a dip angle θ with 
respect to the reference plane, the geometry is considerably more complicated and we 
proceed instead by using a series of coordinate transformations. First, starting with the 
known coordinates of the observation point O and the known coordinates and orientation 
of the sheet S in the LAB coordinate system, we must find the cylindrical  coordinates 
(u,v) of the point in the sheet’s coordinate system. This will enable us to evaluate the 
function BS and find the field components BU and BV at O. We then need a second set of 
transformations that begin with the known field components in the sheet coordinate 
system and give us the desired field components at O in the LAB coordinate system. 
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Let us start with a general observation point O. In a fixed Cartesian coordinate system O 
will have the coordinates 
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We also start for the moment with a general sheet S. In a coordinate system translated to 
the center of the sheet, O has the coordinates 
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Next let us find O in a coordinate system where the symmetry axis of the sheet is aligned 
with the fixed Cartesian Z axis, as shown in Fig. 4. 
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Figure 4. 
 
 We must perform the rotation R(-αS –π/2, y) on O’, where αS  is the angular position of S 
in the fixed coordinate system. We find 
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Finally, we get the coordinates of O in a coordinate system where the sheet axis dips 
below the reference plane by the angle θ.  This corresponds to the actual geometric 
relation between the sheet and the observation point. We need to perform the rotation   
R(-θ, x) around the local x axis, which lies along the radius of the reference circle. We 
find 
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In this coordinate system the projection of the observation point on the z axis is the axial 
coordinate u needed by the sheet function. The two orthogonal coordinates of the 
observation point give the radial coordinate. 
 
Now let us specialize to the case considered here, where dy = 0. 
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It is not difficult to show that in the case when θ = 0 these expressions for u and v reduce 
to Eq. 1. 
 
Now that we have u and v, we can evaluate BS(u,v) to find the field components BU and 
BV  at the observation point. In Cartesian coordinates it has the components 
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We next consider the field components in the coordinate system where the sheet axis is 
back in the reference plane. We rotate B’’’ by R(θ,x) to find 
 

















+−
+=′′

θθ
θθ

cossin

sincos

UVY

UVY

VX

BB

BB

B

B  

 



 8 

In the actual geometric configuration the observation point is separated from the center of 
the sheet by an angle β = αO – αS. Thus we need a final rotation R(-β, y). The field 
components at O are 
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Note that this coordinate system has its x axis pointing radially outwards at the 
observation point. We must reverse the sign of BX given above if we want the result in 
the accelerator system. It is not difficult to show that in the case when θ = 0 these 
expressions for BX and BS reduce to Eq. 2.  
 
 
4.  Field along the circle in the RFOFO model 
 
Now consider the distribution of sheets for the RFOFO cooling ring, shown in Fig. 5. 
 

 
 
Figure 5.  Layout of 24 current sheets for RFOFO model. 
 
There are 12 identical cells, each consisting of two solenoids. We model each solenoid 
with a single current sheet, so there are 24 sheets in all to describe the whole ring. The 
properties of the sheets in each cell are given in Table 2. 
 
 Table 2: Properties of sheets in each cell of RFOFO ring. 
sheet SS  [ m ] L  [ m ] a  [ m ] J  [ A/mm2 ] θ  [mr] δx  [m] 
1 0.30 0.50 0.825 95.27 53 0.10 
2 1.95 0.50 0.825 -95.27 -53 0.10 
 
SS is the axial position relative to the start of a cell of the sheet and δx is a radial 
displacement (positive outwards) of the sheet center. The radial displacement minimizes 
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the integral BX along the circle for one cell, as shown in Fig. 6. The dip angle was chosen 
to give an average vertical field of -0.125 T over one cell, as shown in Fig. 7.  
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Figure 6.  Integrated radial component of magnetic field versus radial displacement of 
sheet center. 
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Figure 7.  Vertical component of magnetic field versus dip angle of solenoid axis. 
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The calculated field components along the circle for one cell of the lattice are shown in  
Figs. 8-10.  
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Figure 8.  Radial component of magnetic field in accelerator coordinates. 
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Figure 9.  Vertical component of magnetic field in accelerator coordinates. 
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Figure 10.  Axial component of magnetic field in accelerator coordinates. 
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Independent calculations of the field components made using the Biot-Savart equation 
gave essentially identical results [6]. 
 
Besides the presence of the BX component, the deviations from the field components 
assumed in the ng1r model are shown in Figs. 11 and 12.  
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Figure 11.  Deviation of vertical field from that used in the ng1r model. 
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Figure 12.   Deviation of axial field from that used in the ng1r model. 
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5.  Check of Maxwell’s equations 
 
The ultimate test for the calculated field components is that they must satisfy the 
Maxwell equations 
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for points along the circle. We have computed these quantities numerically in Fig. 13. We 
use the symmetric form of the derivative, a cylindrical coordinate system and spacing 1 
cm along s and 1 mm along x and y. 
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Figure 13.  Divergence and curl components of the magnetic field for one period of the 
circular path around the RFOFO ring. 
 
The divergence and curl were also checked in Cartesian coordinates and give similar 
agreement [6]. 
 
 
6.  Conclusions 
 
We have determined the magnetic field components on the SA for an RFOFO ring 
containing tipped solenoids. The field configuration assumes that no iron is present to 
shield points on the axis from solenoids at other points in the ring. The field components 
satisfy the Maxwell divergence and curl relations. 
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